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1 Boundary Value Problems for the Heat Equation

1.1 Properties of the heat equation
Consider the heat equation in RT x R™.
(O —Au=f
u(0) = ug

We have already seen how to derive a solution via the fundamental solution:

1
u = frgpp K(t) +ug *z K(t), K(t) = We_w2/(4t)1{tzo}-

This is the unique solution going forward in time which is a temperate distribution.
Here are some key properties for the homogeneous equation given by this fundamental
solution: Consider the heat equation in RT x R™.

%@—Am—o
u(0) = ug

e Infinite speed of propagation: Even if ug has compact support, the solution u imme-
diately spreads to all of R".

e Instant regularization:
u(t) = K(t) * uo,

where K (t) is smooth for ¢ > 0. So u is smooth for ¢ > 0.

e The fundamental solution has Gaussian decay at oo: This means that any initial data
up with |ug| < e will generate a local in time solution



1.2 The mean value property and the maximum principle

Now let’s look at the heat equation in a domain 2 C R™.

(O —Au=f inQxRF
u(t=0)=up inQ
u(t,x) =g on 90 x R*

The third equation is a Dirichlet boundary condition. We could replace it with a
Neumann boundary condition

ou +
a(t,x)—g on 00 x R™.

As with the Laplace equation, we use either one boundary condition or the other but not
both.
Here are several ways to approach this:

e Via a maximum principle.
e Via energy estimates.
e Using Green’s functions.

We first discuss the maximum principle. First, is there a mean value property for the
heat equation? We would like to write something like

1
u(to, xo) = DI /Du(t,x) dx.

for some D. For the Laplace equation, we used a ball for D, but this should not be the
case for the heat equation; unlike for the Laplace equation, balls are not level sets of the
fundamental solution. We may also ask if we need any weights for the maximum principle.

Step 1: Green’s theorem for the heat equation: Let u,v be such that v has compact

support. Then
//(@ —A)u-vdrdt = //(—Ot — A)v - udxdt.

If we want to get u(0, 0) out of the right hand side, then we would need (-9, —A)v = (g0)-
Here, —0; — A is the adjoint heat operator, which is a “backward heat operator” and
gives a backward heat equation with a fundamental solution

1
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Define the parabolic balls
D (0,0) = {|K>**(z, )] <"}

What do these sets look like? If x = 0, then K < t*”/Q, and t~"/2 > iff ¢t < r2. To
figure out the sideways boundaries of these regions, take ¢t ~ %7‘2. Now change x so that

e’/ (4) > 1. Then |z| < v/t ~ r. This looks like an ellipse, but near (0,0), there is a
logarithmic coorection to a parabola.

Our goal is to show that
u(0,0) = / w(t, x)u(t,z) dx
D:(0,0)

for some suitable positive weight w (we want positive so we can think of this as an average).
Look at our Green’s theorem in D, (0,0), which gives boundary terms:

// (8t—A)u-vdxdt—// (=0 — A)v - udzdt
D,(0,0) D,(0,0)
ou ov

+/ VUV — — U+ u- — do.
8D;(0,0) t ov ov

For v = KP2K(t, 2), this does not work because we get boundary terms. Instead, we can
try
v = K"Kt 2) 4,

which makes v = 0 on 0D, (0,0). This makes the first two boundary terms equal 0, but
we would also like to make sure that % =0 on 9dD,(0,0). This is the same as saying that
Vv =0 on 0dD,. The way we can alter our fundamental solution to take advantage of this
is

v = K"t ) + 77" + cln(—KPak . ),
where ¢ is chosen so that Vv =0 on 0D, (0,0). This choice gives us

VK
= _—
Vv=VK +c¢

:VK(lJr%),
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and since K = —r™ on the boundary, we can pick ¢ = r".
If (0 — A)u = 0, then we get

/ Dy(—0 — A)v-udxdt = 0.

We can calculate

(—8t — A)’U = 5(0’0) + c(—at _ A) ln(_TTLKback)

at Kback VKbaCk

= 6(0»0) - ¢ Kback —cV- Kback

s B (at _ A)KbaCk (VKback)Q
= 9(0,0) ¢ K back ¢ (Kback)Q
—_——
=0
= 8(0,0) + c(VIn K™%,

where this is a spatial gradient.

2

x

=4 —r .

00 =7 g2
We get:

Theorem 1.1 (Mean value property). If (0 — A)u =0 in Q x [0,T7],

2
x
u(0,0) = r_"/ —u(t,x) dx dt
D(0,0) 4t?

Remark 1.1. How do we know this is an average? This holds for all solutions to the heat
equation, so plug in a constant. This gives

2
r_"/ r drdt =1.
Dr(0,0) 4t

So this is indeed a weighted average.

For our maximum principle, what is the boundary of our region Cp = Q x [0,T]?

=T el
> Cop = S2 x0T



If you consider causality, the t = T" boundary is determined by the rest, so it should not
be considered. Write 0Cr = Q x {0} U0 x [0,T]. The first part is the bottom, and the
second part is the lateral boundary. Together, they make up the parabolic boundary
Ofc%x

Theorem 1.2 (Strong maximum principle). If (9; — A)u =0 in Q x [0,T], then

max u = maxu.
Cr oCr

Further if u(ty, z¢o) = maxu for some (tg, zg) inside, then u is constant for t < tg.
Proof. Take (tg, o) to be a maximum inside. Then the mean value property gives

max u = u(to, o)

= 1"_"/ (x — x0)° u(t,z) dx dt

(t —t—0)?
2
ST"/ ((: tfﬁo))z max u dx dt
—t—o

— maxu.

Equality must hold, so v = maxw in D, (tg, xo).

oy
(£5)
DS
+ £O
—2

How do we get the whole region {t < ty}? Here is a picture:




Remark 1.2. Just like with the Laplace equation, we can talk about subsolutions
(O —A)u<0

and supersolutions

(815 — A)’U, Z 0.

Using the mean value property with inequalities gives a maximum principle for subsolutions
and a minimum principle for super solutions.

Theorem 1.3 (Comparison principle). Let u~ be a subsolution and u™ be a supersolution
for the heat equation. If u= <u™ on OCr, then v~ < u™ in Cr.

Proof. u~ —u™ is a supersolution. O
Here is a corollary of the maximum principle.
Corollary 1.1. The solution to the Dirichlet problem is unique.

Proof. Subtract two solutions to get u = u; — ug. If

(O —A)u=0
u(0) =0
u(02) =0,

then the maximum principle tells us that u = 0. O
1.3 Energy estimates
Consider the homogeneous Dirichlet problem

(O —A)u=0 inQx][0,T)
u(0) = up
u(092) =0,

and let

E(u(t)) :/\u(t,x)|2d1:.

Then we can compute
QE(u(t)) = 2/u up dx
ot a !

—Q/U-Audx



= 2/|Vu]2d:13
<0,

which tells us that F is nonincreasing in time E(t) < E(0). So if ug = 0, then E(t) = 0,
which gives u(t) = 0.
We can also look at the relation

t
Ja(O)]22 = u(T) 2 + /0 V2, dr.

If we start with u(0) € L?, we get Vu(t) € L? for a.e. t. We can think of this as a parabolic
regularizing effect.
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