# Math 222A Lecture 24 Notes

## Daniel Raban

November 30, 2021

# 1 Boundary Value Problems for the Heat Equation

## 1.1 Properties of the heat equation

Consider the heat equation in  $\mathbb{R}^+ \times \mathbb{R}^n$ .

$$\begin{cases} (\partial_t - \Delta)u = f\\ u(0) = u_0 \end{cases}$$

We have already seen how to derive a solution via the fundamental solution:

$$u = f *_{x,t} K(t) + u_0 *_x K(t), \qquad K(t) = \frac{1}{(4\pi t)^{n/2}} e^{-x^2/(4t)} \mathbb{1}_{\{t \ge 0\}}.$$

This is the unique solution going forward in time which is a temperate distribution.

Here are some key properties for the homogeneous equation given by this fundamental solution: Consider the heat equation in  $\mathbb{R}^+ \times \mathbb{R}^n$ .

$$\begin{cases} (\partial_t - \Delta)u = 0\\ u(0) = u_0 \end{cases}$$

- Infinite speed of propagation: Even if  $u_0$  has compact support, the solution u immediately spreads to all of  $\mathbb{R}^n$ .
- Instant regularization:

$$u(t) = K(t) * u_0,$$

where K(t) is smooth for t > 0. So u is smooth for t > 0.

• The fundamental solution has Gaussian decay at  $\infty$ : This means that any initial data  $u_0$  with  $|u_0| \leq e^{cx^2}$  will generate a local in time solution

#### 1.2 The mean value property and the maximum principle

Now let's look at the heat equation in a domain  $\Omega \subseteq \mathbb{R}^n$ .

$$\begin{cases} (\partial_t - \Delta)u = f & \text{in } \Omega \times \mathbb{R}^+ \\ u(t=0) = u_0 & \text{in } \Omega \\ u(t,x) = g & \text{on } \partial\Omega \times \mathbb{R}^+ \end{cases}$$

The third equation is a **Dirichlet boundary condition**. We could replace it with a **Neumann boundary condition** 

$$\frac{\partial u}{\partial \nu}(t,x) = g$$
 on  $\partial \Omega \times \mathbb{R}^+$ .

As with the Laplace equation, we use either one boundary condition or the other but not both.

Here are several ways to approach this:

- Via a maximum principle.
- Via energy estimates.
- Using Green's functions.

We first discuss the maximum principle. First, is there a mean value property for the heat equation? We would like to write something like

$$u(t_0, x_0) = \frac{1}{|D|} \int_D u(t, x) \, dx.$$

for some D. For the Laplace equation, we used a ball for D, but this should not be the case for the heat equation; unlike for the Laplace equation, balls are not level sets of the fundamental solution. We may also ask if we need any weights for the maximum principle.

Step 1: Green's theorem for the heat equation: Let u, v be such that v has compact support. Then

$$\iint (\partial_t - \Delta) u \cdot v \, dx \, dt = \iint (-\partial_t - \Delta) v \cdot u \, dx \, dt.$$

If we want to get u(0,0) out of the right hand side, then we would need  $(-\partial_t - \Delta)v = \delta_{(0,0)}$ . Here,  $-\partial_t - \Delta$  is the **adjoint heat operator**, which is a "backward heat operator" and gives a backward heat equation with a fundamental solution

$$K^{\text{back}}(x,t) = -\frac{1}{(4\pi|t|)^{n/2}} e^{x^2/(4t)} \mathbb{1}_{\{t \le 0\}}.$$

Define the parabolic balls

$$D_r(0,0) = \{ |K^{\text{back}}(x,t)| \le r^{-n} \}.$$

What do these sets look like? If x = 0, then  $K \approx t^{-n/2}$ , and  $t^{-n/2} \ge r^{-n}$  iff  $t \le r^2$ . To figure out the sideways boundaries of these regions, take  $t \approx \frac{1}{2}r^2$ . Now change x so that  $e^{x^2/(4t)} \ge 1$ . Then  $|x| \le \sqrt{t} \approx r$ . This looks like an ellipse, but near (0,0), there is a logarithmic correction to a parabola.



Our goal is to show that

$$u(0,0) = \int_{D_r(0,0)} \omega(t,x) u(t,x) \, dx$$

for some suitable positive weight  $\omega$  (we want positive so we can think of this as an average). Look at our Green's theorem in  $D_r(0,0)$ , which gives boundary terms:

$$\iint_{D_r(0,0)} (\partial_t - \Delta) u \cdot v \, dx \, dt = \iint_{D_r(0,0)} (-\partial_t - \Delta) v \cdot u \, dx \, dt + \int_{\partial D_r(0,0)} \nu_t \cdot uv - \frac{\partial u}{\partial \nu} \cdot v + u \cdot \frac{\partial v}{\partial \nu} \, d\sigma.$$

For  $v = K^{\text{back}}(t, x)$ , this does not work because we get boundary terms. Instead, we can try

$$v = K^{\text{back}}(t, x) + r^{-n},$$

which makes v = 0 on  $\partial D_r(0,0)$ . This makes the first two boundary terms equal 0, but we would also like to make sure that  $\frac{\partial v}{\partial \nu} = 0$  on  $\partial D_r(0,0)$ . This is the same as saying that  $\nabla v = 0$  on  $\partial D_r$ . The way we can alter our fundamental solution to take advantage of this is

$$v = K^{\text{back}}(t, x) + r^{-n} + c \ln(-K^{\text{back}} \cdot r^n),$$

where c is chosen so that  $\nabla v = 0$  on  $\partial D_r(0,0)$ . This choice gives us

$$\nabla v = \nabla K + c \frac{\nabla K}{K}$$
$$= \nabla K \left( 1 + \frac{c}{K} \right),$$

and since  $K = -r^n$  on the boundary, we can pick  $c = r^n$ .

If  $(\partial_t - \Delta)u = 0$ , then we get

$$\iint D_t(-\partial - \Delta)v \cdot u \, dx \, dt = 0.$$

We can calculate

$$\begin{aligned} (-\partial_t - \Delta)v &= \delta_{(0,0)} + c(-\partial_t - \Delta)\ln(-r^n K^{\text{back}}) \\ &= \delta_{(0,0)} - c\frac{\partial_t K^{\text{back}}}{K^{\text{back}}} - c\nabla \cdot \frac{\nabla K^{\text{back}}}{K^{\text{back}}} \\ &= \delta_{(0,0)} - c\underbrace{\frac{(\partial_t - \Delta)K^{\text{back}}}{K^{\text{back}}}}_{=0} + c\frac{(\nabla K^{\text{back}})^2}{(K^{\text{back}})^2} \\ &= \delta_{(0,0)} + c(\nabla\ln K^{\text{back}})^2, \end{aligned}$$

where this is a spatial gradient.

$$=\delta_{(0,0)}-r^{-n}\frac{x^2}{4t^2}.$$

We get:

**Theorem 1.1** (Mean value property). If  $(\partial_t - \Delta)u = 0$  in  $\Omega \times [0, T]$ ,

$$u(0,0) = r^{-n} \int_{D_r(0,0)} \frac{x^2}{4t^2} u(t,x) \, dx \, dt$$

**Remark 1.1.** How do we know this is an average? This holds for all solutions to the heat equation, so plug in a constant. This gives

$$r^{-n} \int_{D_r(0,0)} \frac{x^2}{4t} \, dx \, dt = 1.$$

So this is indeed a weighted average.

For our maximum principle, what is the boundary of our region  $C_T = \overline{\Omega} \times [0, T]$ ?



If you consider causality, the t = T boundary is determined by the rest, so it should not be considered. Write  $\partial C_T = \overline{\Omega} \times \{0\} \cup \partial \Omega \times [0, T]$ . The first part is the bottom, and the second part is the **lateral boundary**. Together, they make up the **parabolic boundary** of  $C_T$ .

**Theorem 1.2** (Strong maximum principle). If  $(\partial_t - \Delta)u = 0$  in  $\Omega \times [0, T]$ , then

$$\max_{C_T} u = \max_{\partial C_T} u$$

Further if  $u(t_0, x_0) = \max u$  for some  $(t_0, x_0)$  inside, then u is constant for  $t \leq t_0$ . Proof. Take  $(t_0, x_0)$  to be a maximum inside. Then the mean value property gives

$$\max u = u(t_0, x_0)$$
  
=  $r^{-n} \int \frac{(x - x_0)^2}{(t - t_{-0})^2} u(t, x) \, dx \, dt$   
 $\leq r^{-n} \int \frac{(x - x_0)^2}{(t - t_{-0})^2} \max u \, dx \, dt$   
=  $\max u$ .

Equality must hold, so  $u = \max u$  in  $D_r(t_0, x_0)$ .



How do we get the whole region  $\{t \le t_0\}$ ? Here is a picture:



**Remark 1.2.** Just like with the Laplace equation, we can talk about *subsolutions* 

$$(\partial_t - \Delta)u \le 0$$

and supersolutions

$$(\partial_t - \Delta)u \ge 0.$$

Using the mean value property with inequalities gives a maximum principle for subsolutions and a minimum principle for super solutions.

**Theorem 1.3** (Comparison principle). Let  $u^-$  be a subsolution and  $u^+$  be a supersolution for the heat equation. If  $u^- \leq u^+$  on  $\partial C_T$ , then  $u^- \leq u^+$  in  $C_T$ .

*Proof.*  $u^- - u^+$  is a supersolution.

Here is a corollary of the maximum principle.

Corollary 1.1. The solution to the Dirichlet problem is unique.

*Proof.* Subtract two solutions to get  $u = u_1 - u_2$ . If

$$\begin{cases} (\partial_t - \Delta)u = 0\\ u(0) = 0\\ u(\partial\Omega) = 0, \end{cases}$$

then the maximum principle tells us that u = 0.

#### **1.3** Energy estimates

Consider the homogeneous Dirichlet problem

$$\begin{cases} (\partial_t - \Delta)u = 0 & \text{in } \Omega \times [0, T) \\ u(0) = u_0 \\ u(\partial\Omega) = 0, \end{cases}$$

and let

$$E(u(t)) = \int |u(t,x)|^2 \, dx.$$

Then we can compute

$$\frac{\partial}{\partial t} E(u(t)) = 2 \int u \cdot u_t \, dx$$
$$= 2 \int u \cdot \Delta u \, dx$$

$$= -2 \int |\nabla u|^2 \, dx$$
  
$$\leq 0,$$

which tells us that E is nonincreasing in time  $E(t) \leq E(0)$ . So if  $u_0 = 0$ , then E(t) = 0, which gives u(t) = 0.

We can also look at the relation

$$||u(0)||_{L^2}^2 = ||u(T)||_{L^2}^2 + \int_0^t |\nabla u|_{L^2}^2 \, dx.$$

If we start with  $u(0) \in L^2$ , we get  $\nabla u(t) \in L^2$  for a.e. t. We can think of this as a **parabolic** regularizing effect.