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1 Boundary Value Problems for the Heat Equation

1.1 Properties of the heat equation

Consider the heat equation in R+ × Rn.{
(∂t −∆)u = f

u(0) = u0

We have already seen how to derive a solution via the fundamental solution:

u = f ∗x,t K(t) + u0 ∗x K(t), K(t) =
1

(4πt)n/2
e−x

2/(4t)
1{t≥0}.

This is the unique solution going forward in time which is a temperate distribution.
Here are some key properties for the homogeneous equation given by this fundamental

solution: Consider the heat equation in R+ × Rn.{
(∂t −∆)u = 0

u(0) = u0

• Infinite speed of propagation: Even if u0 has compact support, the solution u imme-
diately spreads to all of Rn.

• Instant regularization:
u(t) = K(t) ∗ u0,

where K(t) is smooth for t > 0. So u is smooth for t > 0.

• The fundamental solution has Gaussian decay at∞: This means that any initial data
u0 with |u0| ≤ ecx

2
will generate a local in time solution
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1.2 The mean value property and the maximum principle

Now let’s look at the heat equation in a domain Ω ⊆ Rn.
(∂t −∆)u = f in Ω× R+

u(t = 0) = u0 in Ω

u(t, x) = g on ∂Ω× R+

The third equation is a Dirichlet boundary condition. We could replace it with a
Neumann boundary condition

∂u

∂ν
(t, x) = g on ∂Ω× R+.

As with the Laplace equation, we use either one boundary condition or the other but not
both.

Here are several ways to approach this:

• Via a maximum principle.

• Via energy estimates.

• Using Green’s functions.

We first discuss the maximum principle. First, is there a mean value property for the
heat equation? We would like to write something like

u(t0, x0) =
1

|D|

∫
D
u(t, x) dx.

for some D. For the Laplace equation, we used a ball for D, but this should not be the
case for the heat equation; unlike for the Laplace equation, balls are not level sets of the
fundamental solution. We may also ask if we need any weights for the maximum principle.

Step 1: Green’s theorem for the heat equation: Let u, v be such that v has compact
support. Then ∫∫

(∂t −∆)u · v dx dt =

∫∫
(−∂t −∆)v · u dx dt.

If we want to get u(0, 0) out of the right hand side, then we would need (−∂t−∆)v = δ(0,0).
Here, −∂t −∆ is the adjoint heat operator, which is a “backward heat operator” and
gives a backward heat equation with a fundamental solution

Kback(x, t) = − 1

(4π|t|)n/2
ex

2/(4t)
1{t≤0}.
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Define the parabolic balls

Dr(0, 0) = {|Kback(x, t)| ≤ r−n}.

What do these sets look like? If x = 0, then K � t−n/2, and t−n/2 ≥ r−n iff t ≤ r2. To
figure out the sideways boundaries of these regions, take t ≈ 1

2r
2. Now change x so that

ex
2/(4t) & 1. Then |x| ≤

√
t ≈ r. This looks like an ellipse, but near (0, 0), there is a

logarithmic coorection to a parabola.

Our goal is to show that

u(0, 0) =

∫
Dr(0,0)

ω(t, x)u(t, x) dx

for some suitable positive weight ω (we want positive so we can think of this as an average).
Look at our Green’s theorem in Dr(0, 0), which gives boundary terms:∫∫

Dr(0,0)
(∂t −∆)u · v dx dt =

∫∫
Dr(0,0)

(−∂t −∆)v · u dx dt

+

∫
∂Dr(0,0)

νt · uv −
∂u

∂ν
· v + u · ∂v

∂ν
dσ.

For v = Kback(t, x), this does not work because we get boundary terms. Instead, we can
try

v = Kback(t, x) + r−n,

which makes v = 0 on ∂Dr(0, 0). This makes the first two boundary terms equal 0, but
we would also like to make sure that ∂v

∂ν = 0 on ∂Dr(0, 0). This is the same as saying that
∇v = 0 on ∂Dr. The way we can alter our fundamental solution to take advantage of this
is

v = Kback(t, x) + r−n + c ln(−Kback · rn),

where c is chosen so that ∇v = 0 on ∂Dr(0, 0). This choice gives us

∇v = ∇K + c
∇K
K

= ∇K
(

1 +
c

K

)
,
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and since K = −rn on the boundary, we can pick c = rn.
If (∂t −∆)u = 0, then we get∫∫

Dt(−∂ −∆)v · u dx dt = 0.

We can calculate

(−∂t −∆)v = δ(0,0) + c(−∂t −∆) ln(−rnKback)

= δ(0,0) − c
∂tK

back

Kback
− c∇ · ∇K

back

Kback

= δ(0,0) − c
(∂t −∆)Kback

Kback︸ ︷︷ ︸
=0

+c
(∇Kback)2

(Kback)2

= δ(0,0) + c(∇ lnKback)2,

where this is a spatial gradient.

= δ(0,0) − r−n
x2

4t2
.

We get:

Theorem 1.1 (Mean value property). If (∂t −∆)u = 0 in Ω× [0, T ],

u(0, 0) = r−n
∫
Dr(0,0)

x2

4t2
u(t, x) dx dt

Remark 1.1. How do we know this is an average? This holds for all solutions to the heat
equation, so plug in a constant. This gives

r−n
∫
Dr(0,0)

x2

4t
dx dt = 1.

So this is indeed a weighted average.

For our maximum principle, what is the boundary of our region CT = Ω× [0, T ]?
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If you consider causality, the t = T boundary is determined by the rest, so it should not
be considered. Write ∂CT = Ω × {0} ∪ ∂Ω × [0, T ]. The first part is the bottom, and the
second part is the lateral boundary. Together, they make up the parabolic boundary
of CT .

Theorem 1.2 (Strong maximum principle). If (∂t −∆)u = 0 in Ω× [0, T ], then

max
CT

u = max
∂CT

u.

Further if u(t0, x0) = maxu for some (t0, x0) inside, then u is constant for t ≤ t0.
Proof. Take (t0, x0) to be a maximum inside. Then the mean value property gives

maxu = u(t0, x0)

= r−n
∫

(x− x0)2

(t− t−0)2
u(t, x) dx dt

≤ r−n
∫

(x− x0)2

(t− t−0)2
maxu dx dt

= maxu.

Equality must hold, so u = maxu in Dr(t0, x0).

How do we get the whole region {t ≤ t0}? Here is a picture:
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Remark 1.2. Just like with the Laplace equation, we can talk about subsolutions

(∂t −∆)u ≤ 0

and supersolutions
(∂t −∆)u ≥ 0.

Using the mean value property with inequalities gives a maximum principle for subsolutions
and a minimum principle for super solutions.

Theorem 1.3 (Comparison principle). Let u− be a subsolution and u+ be a supersolution
for the heat equation. If u− ≤ u+ on ∂CT , then u

− ≤ u+ in CT .

Proof. u− − u+ is a supersolution.

Here is a corollary of the maximum principle.

Corollary 1.1. The solution to the Dirichlet problem is unique.

Proof. Subtract two solutions to get u = u1 − u2. If
(∂t −∆)u = 0

u(0) = 0

u(∂Ω) = 0,

then the maximum principle tells us that u = 0.

1.3 Energy estimates

Consider the homogeneous Dirichlet problem
(∂t −∆)u = 0 in Ω× [0, T )

u(0) = u0

u(∂Ω) = 0,

and let

E(u(t)) =

∫
|u(t, x)|2 dx.

Then we can compute

∂

∂t
E(u(t)) = 2

∫
u · ut dx

= 2

∫
u ·∆u dx
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= −2

∫
|∇u|2 dx

≤ 0,

which tells us that E is nonincreasing in time E(t) ≤ E(0). So if u0 = 0, then E(t) = 0,
which gives u(t) = 0.

We can also look at the relation

‖u(0)‖2L2 = ‖u(T )‖2L2 +

∫ t

0
|∇u|2L2 dx.

If we start with u(0) ∈ L2, we get∇u(t) ∈ L2 for a.e. t. We can think of this as a parabolic
regularizing effect.

7


	Boundary Value Problems for the Heat Equation
	Properties of the heat equation
	The mean value property and the maximum principle
	Energy estimates


